# Symmetric Difference in Python – HackerRank Solution

Objective
Today, we’re learning about a new data type: sets.

Concept
If the inputs are given on one line separated by a space character, use split() to get the separate values in the form of a list:

```>> a = raw_input()
5 4 3 2
>> lis = a.split()
>> print (lis)
['5', '4', '3', '2']
```

If the list values are all integer types, use the map() method to convert all the strings to integers.

```>> newlis = list(map(int, lis))
>> print (newlis)
[5, 4, 3, 2]
```

Sets are an unordered bag of unique values. A single set contains values of any immutable data type.

CREATING SETS

```>> myset = {1, 2} # Directly assigning values to a set
>> myset = set()  # Initializing a set
>> myset = set(['a', 'b']) # Creating a set from a list
>> myset
{'a', 'b'}
```

MODIFYING SETS
Using the add() function:

```>> myset.add('c')
>> myset
{'a', 'c', 'b'}
>> myset.add('a') # As 'a' already exists in the set, nothing happens
>> myset
{'a', 'c', 'b', (5, 4)}
```

Using the update() function:

```>> myset.update([1, 2, 3, 4]) # update() only works for iterable objects
>> myset
{'a', 1, 'c', 'b', 4, 2, (5, 4), 3}
>> myset.update({1, 7, 8})
>> myset
{'a', 1, 'c', 'b', 4, 7, 8, 2, (5, 4), 3}
>> myset.update({1, 6}, [5, 13])
>> myset
{'a', 1, 'c', 'b', 4, 5, 6, 7, 8, 2, (5, 4), 13, 3}
```

REMOVING ITEMS
Both the discard() and remove() functions take a single value as an argument and removes that value from the set. If that value is not present, discard() does nothing, but remove() will raise a KeyError exception.

```>> myset.discard(10)
>> myset
{'a', 1, 'c', 'b', 4, 5, 7, 8, 2, 12, (5, 4), 13, 11, 3}
>> myset.remove(13)
>> myset
{'a', 1, 'c', 'b', 4, 5, 7, 8, 2, 12, (5, 4), 11, 3}
```

COMMON SET OPERATIONS
Using union(), intersection() and difference() functions.

```>> a = {2, 4, 5, 9}
>> b = {2, 4, 11, 12}
>> a.union(b) # Values which exist in a or b
{2, 4, 5, 9, 11, 12}
>> a.intersection(b) # Values which exist in a and b
{2, 4}
>> a.difference(b) # Values which exist in a but not in b
{9, 5}
```

The union() and intersection() functions are symmetric methods:

```>> a.union(b) == b.union(a)
True
>> a.intersection(b) == b.intersection(a)
True
>> a.difference(b) == b.difference(a)
False
```

These other built-in data structures in Python are also useful.

Given 2 sets of integers, M and N, print their symmetric difference in ascending order. The term symmetric difference indicates those values that exist in either M or N but do not exist in both.

#### Input Format :

The first line of input contains an integer, M.
The second line contains M space-separated integers.
The third line contains an integer, N.
The fourth line contains N space-separated integers.

#### Output Format :

Output the symmetric difference integers in ascending order, one per line.

```4
2 4 5 9
4
2 4 11 12```

```5
9
11
12```

### Symmetric Difference in Python – HackerRank Solution

```# Enter your code here. Read input from STDIN. Print output to STDOUT
# Symmetric Difference in Python - Hacker Rank Solution START
M = int(input())
mset = set(map(int, input().split()))
N = int(input())
nset = set(map(int, input().split()))
mdef = mset.difference(nset)
ndef = nset.difference(mset)
output = mdef.union(ndef)
for i in sorted(list(output)):
print(i)
# Symmetric Difference in Python - Hacker Rank Solution END```

Disclaimer: The above Problem (Symmetric Difference in Python ) is generated by Hackerrank but the Solution is Provided by Chase2Learn. This tutorial is only for Educational and Learning purposes. Authority if any of the queries regarding this post or website fill the following contact form thank you.