Small Triangles, Large Triangles in c – Hacker Rank Solution

Small Triangles, Large Triangles in c - Hacker Rank Solution
Small Triangles, Large Triangles in c – Hacker Rank Solution

You are given n, triangles, specifically, their sides ai, bi and ci. Print them in the same style but sorted by their areas from the smallest one to the largest one. It is guaranteed that all the areas are different. The best way to calculate a volume of the triangle with sides a, b and c is Heron’s formula:
s = √(P * (P – a) * (P – b) * (P – c)) where P = (a+b+c)/2.

Input Format 

First line of each test file contains a single integer n.n lines follow with ai, bi and con each separated by single spaces.

Constraints

  • 1<=n<=100
  • 1<= ai, bi, ci <=70
  • ai + bi > ci, ai + ci > bi and bi+ci > ai

Output Format

Print exactly n lines. On each line print 3 integers separated by single spaces, which are ai, bi and cof the corresponding triangle.


Sample Input :-

3
7 24 25
5 12 13
3 4 5

Sample Output :-

3 4 5
5 12 13
7 24 25

Explanation

The square of the first triangle is 84. The square of the second triangle is 30.The square of the third triangle is 6. So the sorted order is the reverse one.





Small Triangles, Large Triangles in c – Hacker Rank Solution

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
struct triangle
{
 int a;
 int b;
 int c;
};
typedef struct triangle triangle;
void sort_by_area(triangle* tr, int n)
{
  int *p=malloc(n*sizeof(float));
//create array of size n to store "volumes"
    for(int i=0;i<n;i++)
    {
 float a=(tr[i].a+tr[i].b+tr[i].c)/2.0;
//use 2.0 compulsary int/int gives int, int/float gives float
       p[i]=(a*(a-tr[i].a)*(a-tr[i].b)*(a-tr[i].c));
//formula without sqrt as areas are different guarenteed
//because sqrt dosent work well with float values
    }
//bubble sort
    for(int i=0;i<n;i++)
    {
        for(int j=0;j<n-i-1;j++)
        {
            if(p[j]>p[j+1])
            {
                int temp=p[j];
                p[j]=p[j+1];
                p[j+1]=temp;
//swapping array of areas in ascending
//and simuntaneously the structure contents
                temp=tr[j].a;
                tr[j].a=tr[j+1].a;
                tr[j+1].a=temp;
                temp=tr[j].b;
                tr[j].b=tr[j+1].b;
                tr[j+1].b=temp;
                temp=tr[j].c;
                tr[j].c=tr[j+1].c;
                tr[j+1].c=temp;
            }
        }
    }
}
int main()
{
 int n;
 scanf("%d", &n);
 triangle *tr = malloc(n * sizeof(triangle));
 for (int i = 0; i < n; i++) {
  scanf("%d%d%d", &tr[i].a, &tr[i].b, &tr[i].c);
 }
 sort_by_area(tr, n);
 for (int i = 0; i < n; i++)
 {
  printf("%d %d %d\n", tr[i].a, tr[i].b, tr[i].c);
 }
 return 0;
}

Disclaimer: The above Problem (Small Triangles, Large Triangles in c ) is generated by Hackerrank but the Solution is Provided by Chase2Learn. This tutorial is only for Educational and Learning purposes. Authority if any of the queries regarding this post or website fill the following contact form thank you.

Leave a Comment