# Minimum Path Sum Leetcode Solution

In this post, we are going to solve the Minimum Path Sum Leetcode Solution problem of Leetcode. This Leetcode problem is done in many programming languages like C++, Java, and Python.

## Problem

Given a `m x n` `grid` filled with non-negative numbers, find a path from top left to bottom right, which minimizes the sum of all numbers along its path.

Note: You can only move either down or right at any point in time.

Example 1:

```Input: grid = [[1,3,1],[1,5,1],[4,2,1]]
Output: 7
Explanation: Because the path 1 → 3 → 1 → 1 → 1 minimizes the sum.
```

Example 2:

```Input: grid = [[1,2,3],[4,5,6]]
Output: 12
```

Constraints:

• `m == grid.length`
• `n == grid[i].length`
• `1 <= m, n <= 200`
• `0 <= grid[i][j] <= 100`

Now, lets see the leetcode solution of Minimum Path Sum Leetcode Solution.

### Minimum Path Sum Leetcode Solution in Python

```class Solution:
def minPathSum(self, grid: List[List[int]]) -> int:
m = len(grid)
n = len(grid)

for i in range(m):
for j in range(n):
if i > 0 and j > 0:
grid[i][j] += min(grid[i - 1][j], grid[i][j - 1])
elif i > 0:
grid[i] += grid[i - 1]
elif j > 0:
grid[j] += grid[j - 1]

return grid[m - 1][n - 1]
```

### Minimum Path Sum Leetcode Solutionin CPP

```class Solution {
public:
int minPathSum(vector<vector<int>>& grid) {
const int m = grid.size();
const int n = grid.size();

for (int i = 0; i < m; ++i)
for (int j = 0; j < n; ++j)
if (i > 0 && j > 0)
grid[i][j] += min(grid[i - 1][j], grid[i][j - 1]);
else if (i > 0)
grid[i] += grid[i - 1];
else if (j > 0)
grid[j] += grid[j - 1];

return grid[m - 1][n - 1];
}
};
```

### Minimum Path Sum Leetcode Solution in Java

```class Solution {
public int minPathSum(int[][] grid) {
final int m = grid.length;
final int n = grid.length;

for (int i = 0; i < m; ++i)
for (int j = 0; j < n; ++j)
if (i > 0 && j > 0)
grid[i][j] += Math.min(grid[i - 1][j], grid[i][j - 1]);
else if (i > 0)
grid[i] += grid[i - 1];
else if (j > 0)
grid[j] += grid[j - 1];

return grid[m - 1][n - 1];
}
}
```

Note: This problem Minimum Path Sum is generated by Leetcode but the solution is provided by Chase2learn This tutorial is only for Educational and Learning purposes.

Sharing Is Caring