Hello coders, In this post, you will learn how to solve Mean, Var, and Std in Python HackerRank Solution. This problem is a part of the Python Hacker Rank series.

Mean, Var, and Std in Python HackerRank Solution
Problem
meanThe mean tool computes the arithmetic mean along the specified axis.
import numpy my_array = numpy.array([ [1, 2], [3, 4] ]) print numpy.mean(my_array, axis = 0) #Output : [ 2. 3.] print numpy.mean(my_array, axis = 1) #Output : [ 1.5 3.5] print numpy.mean(my_array, axis = None) #Output : 2.5 print numpy.mean(my_array) #Output : 2.5
By default, the axis is None. Therefore, it computes the mean of the flattened array.
varThe var tool computes the arithmetic variance along the specified axis.
import numpy my_array = numpy.array([ [1, 2], [3, 4] ]) print numpy.var(my_array, axis = 0) #Output : [ 1. 1.] print numpy.var(my_array, axis = 1) #Output : [ 0.25 0.25] print numpy.var(my_array, axis = None) #Output : 1.25 print numpy.var(my_array) #Output : 1.25
By default, the axis is None. Therefore, it computes the variance of the flattened array. stdThe std tool computes the arithmetic standard deviation along the specified axis.
import numpy my_array = numpy.array([ [1, 2], [3, 4] ]) print numpy.std(my_array, axis = 0) #Output : [ 1. 1.] print numpy.std(my_array, axis = 1) #Output : [ 0.5 0.5] print numpy.std(my_array, axis = None) #Output : 1.11803398875 print numpy.std(my_array) #Output : 1.11803398875
By default, the axis is None. Therefore, it computes the standard deviation of the flattened array.
Task :
You are given a 2-D array of size NXM.
Your task is to find:The mean along axis 1The var along axis 0The std along axis
Input Format :
The first line contains the space separated values of N and M.
The next N lines contains M space separated integers.
Output Format :
First, print the mean.
Second, print the var.
Third, print the std.
Sample Input :
2 2 1 2 3 4
Sample Output :
[ 1.5 3.5] [ 1. 1.] 1.11803398875
Mean, Var, and Std in Python – HackerRank Solution
import numpy N,M = map(int, input().split()) l = [] for i in range(N): a = list(map(int, input().split())) l.append(a) l = numpy.array(l) numpy.set_printoptions(legacy='1.13') print(numpy.mean(l, axis = 1)) print(numpy.var(l, axis = 0)) print(numpy.std(l))
Disclaimer: The above Problem (Mean, Var, and Std in Python) is generated by Hackerrank but the Solution is Provided by Chase2Learn. This tutorial is only for Educational and Learning purposes. Authority if any of the queries regarding this post or website fill the following contact form thank you.